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ABSTRACT

Kalman filtering techniques are combined with a semiana-
lvtical orbit generator to develop a sequentizl oxbit deter-
mination algoxrithm. The algorithm is investigated for com-—
putational efficiency, accuracy., and radius of convergence
by comparisoen with truth ephemerides and a Cowell Special
perturbations filter (GTDS FILTER). Test cases relevant to
satellite navigation are examined.

Notation and Symbols

sub-bar (e.g., ¥ ) = vector

super—-bhar (e.g., ¥} = average Or mean;
also statistical mean

€ (e.g., €n) = formal indication of the ordex oi the
quantity
(e = first, 62 = second, ...)

T
€g = [00000 1]

. /U
n = mean motion = JS?

Fauinoctial Elements

a = semimajor axis

h = e sin(u + IQ) kR = e cos(w + IQ)
I,.

p = tanI(l/2) sin @ gq = tan (ir/2) cos Q
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A= M+ w + IQ = mean longitude

I = retrograde factox

super-hat (e.g., %) = predicted estimate
n

super-tilde (e.g., ®X) = updated estimate
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1. INTRODUCTION

The current trends in Earth satellite orbit determination
are toward seguential filtering and onboard computation [1].
The Global Positioning System (GPS) currently employs an
orbit determination algoxrithm that updates a batch estimated
nominal trajectory in real-time with an extended Kalman fil-
texr [2]. This system is designed to achieve an operational
accuracy within 1.5 m. Telesat, a satellite communications
system, has been using a sequential system to support all
station Keeping operations for several yeaxrs now, with both
improved accuracy and reduced costs {3]. Many other appli-
cations exist and will develop for which the timeliness,
accuracy, and efficiency of a real-time orbit determination
system are highly desirable.

Orbit determination processes require +two capabilities:
the ability to accurately propagate an orbit, given initial
conditions; and some estimation algorithm indicating how
observations of the satellite should be used in updating the
ephemeris. Advances in the technology of either capability
imply <corresponding advances in  orbit detexrmination pro-
cesses. Recently, much work has been done by P. Cefola, et
al. [41, [5], [6}, [7) of CSDL in extending Semianalytical
Satellite Theory to allow highly accurate and efficient
orbit propagation. A. Green |[4) developed and used some of
these results in a batch DC estimation algorithm, finding
a2ccuracies and convergence prorerties quite comparable to
high precision Cowell results. This paper exploxes the
implications of these advances in Semianalytical Satellite
Theory for sequential orbit determination, considering both
accuracy and efficiency throuch c¢omparison with batch and
sequential filters available from GTDS and Green [4].

The organization of the paper is dictated by the struc-—
ture of the orbit determination problem. Summaries of semi-
analytical satellite theory and sequential filtering are
presented first. Then their combination into an oxrbhit de<-
erxrmination algorithm is developed to give the algorithm as
it was f£inally implemented. Results are not included hezxe;
they will be presented at the conference.

2. SEMIANALYTICAL SATELLITE THEORY

The accurate and efficient propagation of an ephemeris
requires both a precise model of the foxrces acting on the
satellite and an accurate and efficient means of integrating
the equations of motion. The equations of motion are given
by Newton's Second Law as

ar U
e t I &



The terms from left to right are +the satellite's accelera-
tion, the point-mass gravitational attraction, and all othex
(disturbing) accelerations, due to drag, third bodies, solar
radiation, etc. The disturbing accelerations are typically

several orders of magnitude smaller than the point-mass
force.

Now any integrator is most accurate and efficient <£forx
systems with only small nonlinearities and lou fxequencies
in the force model. Historically, this fact has motivated
tradeoffs betueen analytical methods, which use simplified
force models and analytical approximations %o obhtain the
integrated ephemeris efficiently, and numerical methods,
which retain the full force model and use high precision

numexrical integrators to obtain +the integrated ephemeris
quite accurately.

To increase the efficiency of an ephemeris generator, it
is necessary to decrease both the magnitude of the nonli-
nearities as well as the high frequency content of the force
model. The magnitude of the nonlinearities can be reduced
by choice of the orbital elements. For example, Keplerxian
and equinoctial elements incorporate the effects of the
point mass acceleration, lJeaving only the disturbing accel-

eration to be accounted for. The transiormation from carte-
sian position and velocity to such an element set is the
basis of Gauss' VOP equations. [In the early days of modezrn

satellite orbit determination, many element sets incorporat-
ing differxent components of the disturbing acceleration uere
experimented with; while they could very efficiently propa-
gate an ephemeris subject to only their selected perturba-
tions, to achieve real-woxld accuracy they had to sacrifice
all efficiency gains with the inclusion of additional pex-
turbations.] The high frequency content is removed by aver-
aging these frequencies out; more formally, by transforming
from the current osculating elements described by the VOP
equations, to mean elements described by "averaged VOP equa-

tions."™ For analytical theories, this whole process was
done by hand, necessitating simplified force models and
approximate methods. Semianalytical satellite theorxry,

developed after computers became inexpensive and versatile,
uses numerical methods to handle those <force models that
cannot be averaged analytically. Since the tradeoff bhetween
numerical averaging of the force model and the use of a high
precision integrator on it is in favor of averaging by a
factor of 10 to 100, semianalytical satellite theory is much
more efficient than purely numerical theories. There is one
problen: the transformation back f£from the mean elements to
the osculating elements. The high frequency components or
short periodics were averaged out and must be <recovered
before the mean elements can be used for anything other than
long texrm, approximate prediction. The practical recovery
of the short periodics constitutes one of the impoxrtant con-
tributions of the recent work at CSDL.
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Semianalytical Satellite Theory at CSDL

Semianalytical satellite theory at CSDL is implemented in

equinoctial elements to avoid singularity problems. The
basic equations are shown formally in Table I. Key things
to note are the dependence of the mean element rates on orly
the slowly varying elements 3, and the expansion of the

short periodics n ( E, N ) as a Fourier series whose coeffi-
cients similarxly depend on only the slowly varying elements
a. Thus the elements @ * and short pexriodic coefficients
€eCo( 3 ) and €Do( E ) can be and are .interxrpolated, allowing
efficient evaluation of +the osculating elements foxr many
output times other than those on the integration grigd. This
is significant since for all averaged theories the computa-
tional cost is proportional to the numbexr of integration

steps. Averaging allows large steps, but frequent output
points could reguire small steps.

3. SEQUENTIAL FILTERING THEORY

The equations of motion for the osculating and mean oxbi-

tal elements are shown in Table I. They are nonlineaxr, as
arxre the equations for range and zrange rate observations
given in Table II. The orbit detexrmination problem is to
estimate the satellite's orbit given some initial (a priori)
infermation and a sexries of observations over time. It can
be formulated as an optimal estimation problem:
A

estimate x(t) , given

plant x = f(x) +w ' x(t) = X (2]

observations yk h(i‘tﬁ;tk) + v
using the Y ? such that the variance of the erroxr x - % is
minimum. X, W, and v are random and uncorrelated, YW and v

are white noise processes.

The resulting egquations require propagating the probabil-
ity density function of x (t) and are very difficult and
expensive to solve. As a result, most sequential orbit det-
ermination schemes use some suboptimal filterx, usually
adapted from the Kalman £filter, which solves the 1linearx
optimal estimation problem. The twuo most common adaptations

are the Linearized Kalman Filter and the Extended Kalman
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Table I.

Osculating Elements

Mean elements

Osculating to mean transformation
(the near identity transformation)

Osculating VOP equations

Mean VOP equations

Mean Element Rate

Short Periodics

Periodicity of short periodics

Series Expansion of Short
Periodics

Assume

The Equations of Semianalytical Satellite Theory*

_fa;* = [arh:k:P.q,)\]T
a = [arhrklplq]T
a* = [ah,kbp,aX"
a = Eukoa”
a* = a* + en, (a, )
da* -
& = N&e * & L@
da*  _
& T PEt A @
a (@ = o7 . e F(a,\) d
enl(g,X) = = J[eg(g A) - €A, (a)]aX
n
-2 @™ e, dx
- 1 L6
2a
n. (a,A + 2m = n_(a,\)

Egi ; §&@msﬁ

+ € 2 (a)sin OX

* Extracted from Green [4], which contains a good derivation




where eX;(a) Ef EF(a,\)dX = €a, (a)
0

exo(a) = —f €F(a,A) cos OA di
- — TT — —
0
ez_(a) = —f eF (Z,%) sin X dX
_O' — kit —_— —
0]
(o]
then s!_'\_l(g,k) = Z ec,(a)sin OA - eD,(a)cos oA
o=1 .
h e€c (@) =+ ex_ (@) + —— €ep,_(@ €
where %= = = T=o= — 10— =%
on 20a
b (@) =tez (@ -——cec, @ ¢
<= = =" =0 - — 710 = =6
On 20a
Partials
T =T T
Solve Vector x = [a* c’]
C = parameter vector in force model
3a*(t)
define partials @(t,to) = — = B2
ga* (t )
=~ o
da* (t)
‘i‘(t,to) = = By
9c
Stat rtials equation ! ] an ,aiﬂl
ate pa q -d—t-:- ‘@(t’t ) = € — + — q’(t,t )
b aa* 33* o
Parameter Partials Equation d " 3n 88&1
a—t—\lj(t,to) = 26 — + - Y, t )
| %a* da*
aez_x_l
3¢
Initial Conditions @(t,.to) =1, Y(t, to) =0
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Table II. Range and Range-Rate Satellite Observations

Orbital elements

Mean equinoctial elements a* = [a,E}E}E}E}X]
Osculating elements a* = [a,h,k,p,q,0]"

Cartesian inertial element transformation

|

= T(a*)

<

Cartesian local tangent element transformation

I, = radius to origin of fram on earth's surface
= D -
Brr P~ Ig
= Dv + D
LR - P
range
i = . P
observation p /BLT LT
range rate .
observation p = 1 P . Vv
p =-LT ° —T
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Filterx. These and other nonlinear filtexrs are discussed in
Gelb [8].

The Linearized Filter is the most basic adaptation. The
a priori mean state ¥(tg) is propagated forward in time to
generate the nominal trajectory

x (6) = EG) 5 X () = X (€) (3]
The plant and obserxvation eguations .[2]) are then linearized
about this trajectory to obtain the linear problem
estimate Ax(t) , given
plant Ax(t) = F(t) Ax(t) +w ; DMx(t) = Ax
observation Ayk = H(tk) Af(tk) + v
Ayk = h(g}tk),tk) - h(fN(tk)’tk)
where of l [4]
F(t) = =
9x
fﬂﬂﬂ
k 3x x. (t ),t
Nk

The statistics of Aﬁo' W, and v carry over from above.

A Kalman filter can solve the exrplicit problem [U] opti-
mally, but here the implicit dependence on %N {t) makes the

solution suboptimal. An Extended Kalman Filtexr is essen-
tially a linearized filter that staxrts over, computing a new
nominal trajectory, after every observation. Though an

Extended Filter performs better +than a Linearized Filter,
since the nominal trajectory itself is corrected, the use of
large step sizes and interpolators for exfficiency in the
semianalytical ephemeris propagator precludes its use here.
Rather, a modification of the Linearized Filter will Dbe
used, as discussed below. The equations for a Linearized
Kalman Filtexr are given in Table III.
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Table III. Linearized Kalman Filter Equations

Estimation Problem

x(t) = state to be estimated
y(t) = scalar observation of x(t)
w(t) = white state process noise
v(t) = white observation noise
plant x(t) = f(x,t) +w ; x(t) = x
- == - =0 )
observations y(t) = hi{x,t) + v at times ti
statistics E() = 0 , E(W(t) w (1) = 08t - 1) ,
E(v) = 0 ’ E(v(t) v(T)) = r(S(t - 1),
— T
E(x ) = x ’ E(x x ') = P
—o o —o —o )

X 0 w, V are uncorrelated.

Linearized Kalman Filter Solution

nominal trajectory EN(t) = gjgN,t) H §N(to) = 50
prediction of estimate and covariance
transition matrix . of
@(t,ti_l) = 5;—'(§N,t) @(t,ti_l)
_.N
Plej gty = T
state prediction N ~
Ax (t, = &t ,t,
X ( 1) (tl,t l) Ai(ti_l) ;
At ) = AN
21 x(t;_y)




covariance prediction

~ A

- T
P‘ti) = ®(ti.ti_l) P(ti_1)® (ti.ti_l) + A(ti'ti—l)

A

"
P(t, .) =P(t. ,)
i- i-

1 1l

t.
- 1 8T
Meg e, ) = J' o (e, 000 (¢, Tar

Update of estimate and covariance

observation partial

Kalman gain

observation

state update

covariance update

initialization

ti-1
9h
H, = s (x ,t,)
i BEN =i
P(t.)H
K., = ~
1 HP(t.)H, +r
1
AY(ti) = Y(ti) - h(§N, ti)
"\J A
Ax(t.) = bx(t,) + &, [by(t)
- 1 - b B —1 1
{\1 A
P(t.) = (I - K, H,) P(t,)
1 —1 1 b
Ax(t ) = O
(o}
P = g
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4, SEMIANALYTICAL KALMAN FILTER DESIGN

The Kalman Filter eguations as given :in Table III usually
allow the means of propagating the nominal trajectory and
the transition matrices to be arbitrary, since the filtex
only requires the values at obsexvation times. However,
when optimizing the computations for efficiency, the struc-—
tures of the integrator and the filtexr may become intert-

wined to preoduce a more efficient result. This is the case
for a Semianalytical Kalman Filter, whexe the use of interxr-
polators for the state, the transition matrices, and the

short periodic coefficients has definite implications for
the overall filtex design.

The Linearized Kalman Filter wuses observations ovexr time
to improve the estimate of a satellite's orbit. Typically
the observation times are not known in advance, so the
underlying ephemeris generator must be able to efficiently
generate the values of the state and the transition matrices
at essentially arbitrary times and arbitrarily frequently.
This requirement does not decrease the efficiency o high
precision numexical integratcrs (such as Adams-Cowell,
etc.), since they are constrained to small step sizes anyway
and automatically g¢enerate the reguired wvalues at many
points in time. Analytical and Semianalytical integrators,
on the other hand, use very large step sizes, generating the
required state and transition matrices at only a few points
in time. Such integrators use interpolatoxs to obtain the
values at intermediate points in time. The contribution at
¢SPL has been to develop an interpolation method that
retains the efficiency of analytical integrators and also
gives values with the accuracies of numerical integrators.

In the optimization of the Semianalytical Kalman Filter
for efficiency, the semianalytical integrator and the Kalman
Filter each place requirements on the other.

The use of interpolators by the integrator over the inte-
gration grid dictates the use of a Linearized Kalman filter
inside the integration grid, although the solve vector can

be updated aftexr processing all the observations in that
grid.

The filter, on the other hand, requires the transition
matrices ®(ty,t3.7), T(tg,tj-1 ) betueen adjacent observation

times t4_3 and ty. The integrator can most readily supply
the transition matrices from the beginning of the integra-
tion gxrid, ®(ti,to), T(ti.,.t). By using the ecuations
<I>(ti,ti_1) = &(t ,t) ble ot )
- o1 5]
Sle st ) =& (e 1t [
= - t Y
¥l ot ) Yt t) et , i-1) (ti_l.to)
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we can restate the filter's zrequirxement _ as supplying
@(ti.t ), ¥(ti,% ), and ¢-1 (ti,t5). While ¢-l(ti.to) could
be calculated directly from $(t;,t,), the expense of comput-
ing matrix inverses motivates another solution. &(t, ,t ) is
calculated <£f£rom a Hermite interpolator using integration

grid values and rates. Since the rate of ¢‘1(t,to) can be
calculated as

<I>_l(t,t ) = —Q_l(t,t) d(t,t ) <I>'l(t,t ) [6]
(o] (o) Ko (o)

a _ similar Hermite intexrpolator can be constrxucted for

& (ti,to). This interpolator is included in the semiana-
lytical integrator.

The last requirement of the filter on the integrator is
the calculation of A, the contribution of the state process
noise. Due to the difficulty in defining ¢, the process
noise strength, A, will be calculated as linear in time

A= Ry - ) [7]

This follows the procedure already incorporated in GTDS {9
and appears to work quite well.

The implementation of the rest of the filter equations is
straightforward and follows softuare already in the GTDS
FILTER subroutines.

A procedural statement of the final algorithm foxr imple-
menting this Semianalytical Kalman Filtex design is given in
Table IV.

5. CONCLUSIONS

An algorithm for implementing a Semianalytical Kalman

Filter has been presented. Its implementation is currently
being completed. Results will be presented at the confer-
ence.



Table IV. The Semianalytical Kalman Filter Algorithm

Due to use of a Runge kutta integrator, we may consider only one
integration grid step; all others are processed identically.

Operations on the Integration Grid

N A A i*
1. t = to update x =x + Mx X =
c
r\J A
update P=P
. . . . ’\I
inititalize Ax = 0
t = I
¢(to, o)
¥t ,t) =0 save in Vs
o' o
¢-l(to,t ) =1 save in Os

2. t = ts + At do averaged integration
A

obtain x(t), <I>(t,to) R ‘P(t,to)
. ~ 5’1
set up mean interpolators x, ¢, Y,

3. t= to + At set up interpolators for short periodic

coefficients Ego(g) R 620(3)




Operations on the Observation Grid

1. obtain the new observation, y(ti), at time t = ti'
A

L ] j t f . N \y
2. interpolate for Eftl)' @(tl,to) (ti,to)
_l .
we already have ¢ (to’ti-l) in ¢s
3, interpolate for short periodic coefficients
eC,(alt,))

’ EEO (i(tl))

4. construct the osculating elements

N
gf(ti) = g}(ti) + ;ga Egg(éh sin OA - egoléb cos CA

5. transform to cartesian elements and construct the nominal observation
A
h(X(t)rt)
=i i

the observation residual

A

by (t,) = y(t) - hix(t),t,)

and the observation partials

[o%)
=2

B, ]

_dh 1

s
i

Q2

1% >

den (3}?}
_l__
B, = =
dax
J en, (a,A)
B, =
o¢

6. Compute the transition matrices

-1
Bt ,t, ) = e ) @ (Y, .t = dltat) Os
. _ &1 -
using ¢_ = ¢ (t;_y0t,)r and ¥, = W(ti_l,to)
} = - v
Fe e, ) ¥t ot ) = ®le,t, 1) ¥



7. Obtain predicted solve vector and covariance

~ N
Bx(t,) = @(ti,ti_l) bx (e, _,)

~ Ot ,t. ) Y(t,,t, ) Ot k. _)
P(ti) - [ i’ Ti-1 i’ 7i=-1 ] %(t'_l) [ i’ Ti-1
0 1 . 0

+ Mgt )

1

Yy = A . (&£, - t, )
1

Aegoty i-1

1

8. Complete the update phase of the filter.

N T
P(t.) H,
1 1

Calculate the gain Ki = (Hi s(ti)HiT + R)

update the state Ax(t.) = Ax(t,) + K, (Ay(t,) - H, Dx(t.))
- 1 - 1 1 1 1 — 1

A

n
update the covariance P(ti) = (I - KH)P(ti)

9, Save transition matrices for next observation

¢ = Q-l(ti,to) interpolated

<
]

W(ti,to) interpolated in 2

Go to step 1.

Yi(t,.,t.
1 1=

]
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